Games Animation Forum

返回   Games Animation Forum > 其他 > 學術文化綜合研討區

回覆
 
主題工具 顯示模式
舊 10-22-06, 09:36 PM   #26
P.Hope
GAF GGXX團
39最高( ̄∇ ̄)
 
註冊日期: Nov 2002
文章: 8,932
我不知數學上定義是怎樣~

因為現實中的0.999.... 幾乎是不存在的~
如果無法證明0.999....是存在的, 咁"0.999.... 是否等於1這命題"也是不存在的
嘗試解釋一個不存在的問題實在沒多大意義~ 要解釋這問題, 就先要知你的0.999.... 是怎樣得來的~

例如假設有一個蛋糕, 完美地分為3等份, 咁每份都會一樣係0.333.....
而3份加埋就係1, 咁即是

a, 0.333.....x3 = 1
b, 0.333.....x3 =0.999.......
c, 0.999....... = 1

以上的假設可以創造出0.333.....(無限不斷重複個3) 這個數, 同時證明了0.333.....x3 = 1 ,

但 當中的0.333.....x3 = 0.999....... 就只是假設 , 所以不能用來證明 0.333.....x3 = 0.999....... = 1 ~

咁 0.333.....x3 = 0.999....... 這個假設是否成立呢 ?

因為以上的0.333.....是要在1個蛋糕完美地給分成3等份時才會成立 ,
所以一定要是 1 - 0.333.......x3 = 0 ,

如果認同了 1 - 0.999....... = 0.0000....1, 咁即是可以得出 0.333.......x3 <> 0.999....... 同時 0.999...... <>1

但 如果認同 1 - 0.999....... = 0 , 咁就更加沒必要去 解釋這問題了~ 因為0.999.... 己被認同為 1 的另一個叫法

雖然不理數學定義只用現實假設去解釋就怎看都是矛盾的

可是世上不可能有矛盾的事發生, 因為發生矛盾的世界是不可能存在的, 只是沒有矛盾的東西不代表就可以用沒有矛盾的文句去解釋, 總之相信自己感受到的東西是真實的就好了~ 反正無論是定義還是真實, 都是不停的在崩潰被推翻...


__________________
感謝世嘉 祝 所有大大 心想事成 一抽5星
溫馨提示 : 良心教學
P.Hope 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:01 PM   #27
鬼斬左文字
Crazy Gamer
 
註冊日期: Dec 2004
文章: 1,310
Wii U IDplay4mario
Nintendo Switch ID4327-6773-9303
PSN  IDplay4lifehk
XBox Live Gamertagplay4lifehk
我記得大學既professor教既

0.2222222222222222222222 = 2/9
0.3333333333333333333333 = 3/9
0.7777777777777777777777 = 7/9
0.9999999999999999999999 = 9/9 = 1

Mathematically,0.9 repeating decimal is equal to 1.
仲有無人有問題 XD ?
鬼斬左文字 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:05 PM   #28
大山椒魚
God of Gamer
......
 
註冊日期: Sep 2002
文章: 14,953
引用:
作者: 鬼斬左文字
我記得大學既professor教既

0.2222222222222222222222 = 2/9
0.3333333333333333333333 = 3/9
0.7777777777777777777777 = 7/9
0.9999999999999999999999 = 9/9 = 1

Mathematically,0.9 repeating decimal is equal to 1.
仲有無人有問題 XD ?
2/9你會計到0.2222222222222222222222
3/9你會計到0.3333333333333333333333
7/9你會計到0.7777777777777777777777
9/9你只會計到1

所以唔算解決左問題


__________________
  ┏━┓ ┏┓ ┏┳┓     ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏┳┳┓
 ┏┛┏╋━┛┗━┫┃┃ ┏┓ ┏┻━┫┏┻━┫┏┻━┫┏┻━┫┏┻━┫┏┻━┫ ┃┃┃┃
┏┛┏┛┗━┓┏━┻╋╋━┛┗━╋━┓┗╋━┓┗╋━┓┗╋━┓┗╋━┓┗╋━┓┗┓┃┃┃┃
┃ ┃ ┏━┛┗━┓┃┃┏┓┏┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃┃┃┃┃
┗┓┗┓┣┳┓┏━┛┃┃┣┛┗┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃┗┻┻┛
 ┗┓┗┫┗┻┻━┓┗━┻┓┏━┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┳┳┓
  ┗━┻━━━━┛   ┗┛  ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗┻┻┛
大山椒魚 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:13 PM   #29
P.Hope
GAF GGXX團
39最高( ̄∇ ̄)
 
註冊日期: Nov 2002
文章: 8,932
引用:
作者: 鬼斬左文字
我記得大學既professor教既

0.2222222222222222222222 = 2/9
0.3333333333333333333333 = 3/9
0.7777777777777777777777 = 7/9
0.9999999999999999999999 = 9/9 = 1

Mathematically,0.9 repeating decimal is equal to 1.
仲有無人有問題 XD ?
0.11111111111....111 x9= 0.9999999999......9999

但一個蛋糕分等分為9份,
每份就是0.11111111111....111x
但不未必是0.11111111111....111

除非證明到 0.11111111111....111x = 0.11111111111....111

ps.x不等於1 , 而是比1大小小的某個不能用文字寫出來的數值


__________________
感謝世嘉 祝 所有大大 心想事成 一抽5星
溫馨提示 : 良心教學

此篇文章於 10-22-06 10:17 PM 被 P.Hope 編輯。
P.Hope 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:14 PM   #30
鬼斬左文字
Crazy Gamer
 
註冊日期: Dec 2004
文章: 1,310
Wii U IDplay4mario
Nintendo Switch ID4327-6773-9303
PSN  IDplay4lifehk
XBox Live Gamertagplay4lifehk
請注意

我係
0.11111111111111111111111111 = 1/9
0.22222222222222222222222222 = 2/9
0.33333333333333333333333333 = 3/9
0.44444444444444444444444444 = 4/9
0.55555555555555555555555555 = 5/9
0.66666666666666666666666666 = 6/9

所以
0.99999999999999999999999999 = 9/9 = 1

你知唔知我想表達咩?
鬼斬左文字 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:16 PM   #31
P.Hope
GAF GGXX團
39最高( ̄∇ ̄)
 
註冊日期: Nov 2002
文章: 8,932
引用:
作者: 鬼斬左文字
請注意

我係
0.11111111111111111111111111 = 1/9
0.22222222222222222222222222 = 2/9
0.33333333333333333333333333 = 3/9
0.44444444444444444444444444 = 4/9
0.55555555555555555555555555 = 5/9
0.66666666666666666666666666 = 6/9

所以
0.99999999999999999999999999 = 9/9 = 1

你知唔知我想表達咩?
請問怎樣可以證明 1/9 = 0.111111111.....1 ?


__________________
感謝世嘉 祝 所有大大 心想事成 一抽5星
溫馨提示 : 良心教學
P.Hope 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:18 PM   #32
鬼斬左文字
Crazy Gamer
 
註冊日期: Dec 2004
文章: 1,310
Wii U IDplay4mario
Nintendo Switch ID4327-6773-9303
PSN  IDplay4lifehk
XBox Live Gamertagplay4lifehk
calculator
或是我表達得唔好
0.11111111111111111111111111
我係指無盡頭1111

即係0.1 個1上面有一點=0=
鬼斬左文字 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:20 PM   #33
大山椒魚
God of Gamer
......
 
註冊日期: Sep 2002
文章: 14,953
引用:
作者: 鬼斬左文字
請注意

我係
0.11111111111111111111111111 = 1/9
0.22222222222222222222222222 = 2/9
0.33333333333333333333333333 = 3/9
0.44444444444444444444444444 = 4/9
0.55555555555555555555555555 = 5/9
0.66666666666666666666666666 = 6/9

所以
0.99999999999999999999999999 = 9/9 = 1

你知唔知我想表達咩?
明,
但係你呢個講法唔夠充分,
因為事實上9/9的確唔到可以好似其他咁
例如8/9咁可以用分子除分母既方法出到0.8888888888888888888888


__________________
  ┏━┓ ┏┓ ┏┳┓     ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏┳┳┓
 ┏┛┏╋━┛┗━┫┃┃ ┏┓ ┏┻━┫┏┻━┫┏┻━┫┏┻━┫┏┻━┫┏┻━┫ ┃┃┃┃
┏┛┏┛┗━┓┏━┻╋╋━┛┗━╋━┓┗╋━┓┗╋━┓┗╋━┓┗╋━┓┗╋━┓┗┓┃┃┃┃
┃ ┃ ┏━┛┗━┓┃┃┏┓┏┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃┃┃┃┃
┗┓┗┓┣┳┓┏━┛┃┃┣┛┗┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃┗┻┻┛
 ┗┓┗┫┗┻┻━┓┗━┻┓┏━┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┳┳┓
  ┗━┻━━━━┛   ┗┛  ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗┻┻┛
大山椒魚 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:24 PM   #34
P.Hope
GAF GGXX團
39最高( ̄∇ ̄)
 
註冊日期: Nov 2002
文章: 8,932
引用:
作者: 鬼斬左文字
calculator
或是我表達得唔好
0.11111111111111111111111111
我係指無盡頭1111

即係0.1 個1上面有一點=0=

其實是因為 1/9 會等如一個小數, 而呢個小數的最右手面(最尾的一個位)不可能用數字表達, 所以呢個小數的最右手面(最尾的一個位)先會變成是”1上面有一點”, 咁唔代表 1/9=的呢個小數的最右手的一個位是1, 如果呢個小數的最右手的一個位不是1, 咁呢個小數乘以9之後的最右手的一個位也不會是9


__________________
感謝世嘉 祝 所有大大 心想事成 一抽5星
溫馨提示 : 良心教學
P.Hope 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:31 PM   #35
大山椒魚
God of Gamer
......
 
註冊日期: Sep 2002
文章: 14,953
原來9/9真係出到0.99999999999999999999
死都唔出個"1"就得
即係不斷退後數位再用除d"9"出黎....

用1/1都得....


__________________
  ┏━┓ ┏┓ ┏┳┓     ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏┳┳┓
 ┏┛┏╋━┛┗━┫┃┃ ┏┓ ┏┻━┫┏┻━┫┏┻━┫┏┻━┫┏┻━┫┏┻━┫ ┃┃┃┃
┏┛┏┛┗━┓┏━┻╋╋━┛┗━╋━┓┗╋━┓┗╋━┓┗╋━┓┗╋━┓┗╋━┓┗┓┃┃┃┃
┃ ┃ ┏━┛┗━┓┃┃┏┓┏┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃┃┃┃┃
┗┓┗┓┣┳┓┏━┛┃┃┣┛┗┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃┗┻┻┛
 ┗┓┗┫┗┻┻━┓┗━┻┓┏━┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┳┳┓
  ┗━┻━━━━┛   ┗┛  ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗┻┻┛

此篇文章於 10-22-06 10:35 PM 被 大山椒魚 編輯。
大山椒魚 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:39 PM   #36
鬼斬左文字
Crazy Gamer
 
註冊日期: Dec 2004
文章: 1,310
Wii U IDplay4mario
Nintendo Switch ID4327-6773-9303
PSN  IDplay4lifehk
XBox Live Gamertagplay4lifehk
可能由我口講出唔多夠說服力XD
我明白你地既講法
不過數學上咁prove就係0.999999999999=9/9=1

蛋糕分9份
根本無可能分到9份完全一樣
等於1/9
永遠除唔盡,所以會有無限個1出現

應該是數學上既無可避免rounding吧
鬼斬左文字 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:42 PM   #37
鬼斬左文字
Crazy Gamer
 
註冊日期: Dec 2004
文章: 1,310
Wii U IDplay4mario
Nintendo Switch ID4327-6773-9303
PSN  IDplay4lifehk
XBox Live Gamertagplay4lifehk
#2 BeBop 既方法
同我知道既方法
是一樣吧
鬼斬左文字 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:43 PM   #38
大山椒魚
God of Gamer
......
 
註冊日期: Sep 2002
文章: 14,953
一開10冇問題,
但一開9就有問題

我覺得呢個係10進制既錯


__________________
  ┏━┓ ┏┓ ┏┳┓     ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏━┓ ┏┳┳┓
 ┏┛┏╋━┛┗━┫┃┃ ┏┓ ┏┻━┫┏┻━┫┏┻━┫┏┻━┫┏┻━┫┏┻━┫ ┃┃┃┃
┏┛┏┛┗━┓┏━┻╋╋━┛┗━╋━┓┗╋━┓┗╋━┓┗╋━┓┗╋━┓┗╋━┓┗┓┃┃┃┃
┃ ┃ ┏━┛┗━┓┃┃┏┓┏┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃ ┗┓┃┃┃┃┃
┗┓┗┓┣┳┓┏━┛┃┃┣┛┗┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃ ┏┛┃┗┻┻┛
 ┗┓┗┫┗┻┻━┓┗━┻┓┏━┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┛┏┳┳┓
  ┗━┻━━━━┛   ┗┛  ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗━┛ ┗┻┻┛
大山椒魚 目前離線   回覆時引用此篇文章
舊 10-22-06, 10:48 PM   #39
鬼斬左文字
Crazy Gamer
 
註冊日期: Dec 2004
文章: 1,310
Wii U IDplay4mario
Nintendo Switch ID4327-6773-9303
PSN  IDplay4lifehk
XBox Live Gamertagplay4lifehk
引用:
作者: ZONDAS
一開10冇問題,
但一開9就有問題

我覺得呢個係10進制既錯
同意=0=


唔講都記得我地用緊十進制
鬼斬左文字 目前離線   回覆時引用此篇文章
舊 10-22-06, 11:11 PM   #40
GUSTAV
The One
poor
 
註冊日期: Oct 2003
文章: 29,578
XBox Live Gamertag邊有錢 傻的嗎
引用:
作者: 鬼斬左文字
請注意

我係
0.11111111111111111111111111 = 1/9
0.22222222222222222222222222 = 2/9
0.33333333333333333333333333 = 3/9
0.44444444444444444444444444 = 4/9
0.55555555555555555555555555 = 5/9
0.66666666666666666666666666 = 6/9

所以
0.99999999999999999999999999 = 9/9 = 1

你知唔知我想表達咩?
正如我之前所講
呢個只係一d al 教初中生既教法

呢個絕對唔係100% o岩
你大可以去搵下一d al limit既題目
有好多就咁代1落去會炒ga

你prof 覺得廢事煩係到頹教緊等你唔駛煩佢炸


__________________
この袁紹おもしろい事は求めぬ!
小よく大を制するような奇計も求めぬ!
制覇は当然のごとく成すべし!

それが王者の戦いというものだ

此篇文章於 10-23-06 12:06 AM 被 GUSTAV 編輯。
GUSTAV 目前離線   回覆時引用此篇文章
舊 10-22-06, 11:32 PM   #41
newagedreams
Crazy Gamer
 
註冊日期: Jan 2003
文章: 1,466
Try to look it as a limit.
newagedreams 目前離線   回覆時引用此篇文章
舊 10-22-06, 11:33 PM   #42
newagedreams
Crazy Gamer
 
註冊日期: Jan 2003
文章: 1,466
引用:
作者: 李某人
那是不是所有循環小數都可以化成 limit 再找它相應的分數...?
例如 0.343434...:

0.343434...
=lim(n->INF) (0.31 + 0.31*0.1 + 0.31 *0.1^2 + ... + 0.31*0.1^n)
=0.31*lim(n->INF) (1 + 0.1 + 0.1^2 + 0.1^n)
=0.31*lim(n->INF) (1 - 0.1^n)/(1 - 0.1)
=0.31/0.9 = 31/90

不過 31/90 = 0.3444...

我的計算有什麼問題...?

um.. i can only say, we cannot use a number to restate the limit.
newagedreams 目前離線   回覆時引用此篇文章
舊 10-23-06, 12:07 AM   #43
GUSTAV
The One
poor
 
註冊日期: Oct 2003
文章: 29,578
XBox Live Gamertag邊有錢 傻的嗎
引用:
作者: newagedreams
um.. i can only say, we cannot use a number to restate the limit.
lim n->inf 1/n = 0 係千真万確既事實b


__________________
この袁紹おもしろい事は求めぬ!
小よく大を制するような奇計も求めぬ!
制覇は当然のごとく成すべし!

それが王者の戦いというものだ
GUSTAV 目前離線   回覆時引用此篇文章
舊 10-23-06, 01:30 AM   #44
newagedreams
Crazy Gamer
 
註冊日期: Jan 2003
文章: 1,466
引用:
作者: GUSTAV
lim n->inf 1/n = 0 係千真万確既事實b


I was referring to the case "0.34343434...", not making a gerneralisation.

When we say lim ( ) = a, we are using a number "a" to restate the limit. But in the case "0.343434...", we are unable to do so, whereas in the case of 0.9999...., we can. That's it.

I am not challenging the use of limit in any aspect of mathematics.
newagedreams 目前離線   回覆時引用此篇文章
舊 10-23-06, 01:49 AM   #45
GUSTAV
The One
poor
 
註冊日期: Oct 2003
文章: 29,578
XBox Live Gamertag邊有錢 傻的嗎
引用:
作者: newagedreams
I was referring to the case "0.34343434...", not making a gerneralisation.

When we say lim ( ) = a, we are using a number "a" to restate the limit. But in the case "0.343434...", we are unable to do so, whereas in the case of 0.9999...., we can. That's it.

I am not challenging the use of limit in any aspect of mathematics.
0.343434...可以拆做0.34+0.0034+0.000034....
一樣可以做limit
樓上拆錯姐


__________________
この袁紹おもしろい事は求めぬ!
小よく大を制するような奇計も求めぬ!
制覇は当然のごとく成すべし!

それが王者の戦いというものだ
GUSTAV 目前離線   回覆時引用此篇文章
舊 10-23-06, 04:05 AM   #46
PTX-003C
God of Gamer
天下第一盲鬼
 
註冊日期: Dec 2004
文章: 9,134
PSN  IDKazamiChris
XBox Live GamertagGesphest MK III
you just have to remember: mathematicly correct =/= realisticly correct
it can be created as 1 because error is small, but doesn't mean it is actually 1


__________________
GAF版友『飛燕』的畫作被「G-ZONE」盜用﹗
我的小說: 遺忘戰線

====================================================

BLOG: http://blog.roodo.com/blinder_geist
PTX-003C 目前離線   回覆時引用此篇文章
舊 10-23-06, 10:05 AM   #47
edison1610
Crazy Gamer
九一終結者
 
註冊日期: Jul 2006
文章: 1,711
lim 是指 TEND TO
lim
x->1 Y = 10, 意思是
當x tend to 1, y tend to 10.


__________________
===============Kunoichi Terminator==
鄙人 浪客行 維新義士
女忍 絲襪衣 封建舊物
絕殺 車輪斬 去舊迎新
=========================女忍殺==
edison1610 目前離線   回覆時引用此篇文章
舊 10-23-06, 10:11 AM   #48
IamO
God of Gamer
無聊人一號
 
註冊日期: Aug 2003
文章: 7,067
引用:
作者: edison1610
lim 是指 TEND TO
lim
x->1 Y = 10, 意思是
當x tend to 1, y tend to 10.
a
不明白


__________________
↘☆♂我係一杯巧巧飲既凍檸茶走冰走甜@37度體溫♀★↙
由今天開始寫blog吧
IamO 目前離線   回覆時引用此篇文章
舊 10-23-06, 10:25 AM   #49
Jamie
God of Gamer
バンブラ小職人
 
註冊日期: Apr 2003
文章: 15,224
XBox Live GamertagJaMieGAF
不如簡單用中學數, G.P. SUM TO INFINITY
0.999.... = 0.9 + 0.09 + 0.009 + ....
= 0.9 (1+0.1+0.01+....)
= 0.9 * 1 / (1-0.1)
= 0.9 * 1 / 0.9 = 1

YAHOO中有一個相類似的問題
http://hk.knowledge.yahoo.com/questi...=7006080502417
如果用常理去看, 無論加多少次都只會越來越接2, 永遠都只會少於2
但INFINITY不是一個常理中的數字, 是一個CONCEPT
那個CONCEPT就是如果1+0.5+0.25+0.125....直到INFINITY時就會等於2
同樣道理0.99999....一直有INFINITY那麽多的9在後頭的話就會等於1


__________________
ありがどう。。。スキ。。。さようなら

男は__で勝負!!
[NICO] 實況 KY 彈幕 外語 自重 [/NICO]

此篇文章於 10-23-06 10:36 AM 被 Jamie 編輯。
Jamie 目前離線   回覆時引用此篇文章
舊 10-23-06, 10:48 AM   #50
鬼斬左文字
Crazy Gamer
 
註冊日期: Dec 2004
文章: 1,310
Wii U IDplay4mario
Nintendo Switch ID4327-6773-9303
PSN  IDplay4lifehk
XBox Live Gamertagplay4lifehk
引用:
作者: Jamie
不如簡單用中學數, G.P. SUM TO INFINITY
0.999.... = 0.9 + 0.09 + 0.009 + ....
= 0.9 (1+0.1+0.01+....)
= 0.9 * 1 / (1-0.1)
= 0.9 * 1 / 0.9 = 1

YAHOO中有一個相類似的問題
http://hk.knowledge.yahoo.com/questi...=7006080502417
如果用常理去看, 無論加多少次都只會越來越接2, 永遠都只會少於2
但INFINITY不是一個常理中的數字, 是一個CONCEPT
那個CONCEPT就是如果1+0.5+0.25+0.125....直到INFINITY時就會等於2
同樣道理0.99999....一直有INFINITY那麽多的9在後頭的話就會等於1
第3個方法prove係=1啦...
如果有覺得3個方法都係錯既話
就推翻佢

我唔理尼3種方法係maths,a.maths or pure maths
唔通maths 同 a.maths or pure maths 有contradiction?

居然仲話我個head of meths department 頹教人
鬼斬左文字 目前離線   回覆時引用此篇文章
回覆

主題工具
顯示模式

論壇跳轉


現在的時間是 03:16 AM


手機版 | APP版
Powered by vBulletin® 版本 3.8.3
版權所有 ©2000 - 2025,Jelsoft Enterprises Ltd. map
Games Animation Forum